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EVALUATION OF ATTENUATION/MINIMUM-PHASE PAIRS 

BY MEANS OF TWO FAST FOURIER TRANSFORMS 

INTRODUCTION 

It is often important to determine whether a given linear 

device is minimum-phase [1], because if so, it is then possible 

to compensate the filter characteristic with reciprocal pole-zero 

locations and obtain an overall all-pass characteristic with flat 

amplitude and linear phase responses.  A relatively simple way of 

making this determination is to measure the attenuation (or 

decibel gain) and actual phase shift of the given linear device 

and then compute the minimum-phase corresponding to the measured 

attenuation.  If this latter calculated phase agrees with the 

actual measured phase, then the filter is minimum-phase. 

The minimum-phase corresponding to a given attenuation 

function is determined analytically by a Hilbert transform 

[2; chapter 6, article 22] or [3; section 10-3].  However, this 

direct integral evaluation is computationally unattractive due to 

two poles on the line of integration [3; (10-67)J.  In addition, 

it yields only a single value for the phase after each numerical 

integration.  We will circumvent both of these difficulties by 

first subtracting the singularities (which will be handled 

analytically) and then employing fast Fourier transforms for 

efficient numerical evaluation of the entire phase response. 

1/2 
Reverse Blank 
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TRANSFER FUNCTION RELATIONS 

FILTER CHARACTERIZATIONS 

A linear time-invariant filter is characterized by its 

impulse response h(x) or by its transfer function H(f) according 

to Fourier transform 

H(f) -  dx exp(-i2nfx) h(x) • F{h(x)} . (1) 

(Integrals without limits are over the range of nonzero 

integrand.)  Both the impulse response h(x) and the transfer 

function H(f) can be complex functions of time delay x and 

frequency f, respectively. 

The transfer function will be represented in terms of its 

real and imaginary parts according to 

H(f) - Hr(f) + i H.(f) , (2) 

where 

Hr(f) -  j[H(f) + H*(f)] , 

Hi(f) " nlH(f) - H*<f>i  ' <3> 

It can also be represented in terms of its even and odd parts as 

H(f) - He(f) + HQ(f) , (4) 

which are generally defined according to 
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He(f) - j[H(f) + H(-f)] -    dr cos(2nfx) h(x) , 

HQ(f) - |(H(f) - H(-f)] - -ij dx sin(2itfx) h(x) .     (5) 

Functions H (f) and H (f) are both complex generally, whereas 

H (f) and H.(f) are always real.  Impulse response h(x) can be 

complex. 

(In the special case where impulse response h(x) is real, 

then 

He(f) -  Hr(f) -    dx cos(2nfx) h(x) , 

Ho(f) - i H.(f) - -if dx sin(2rtfx) h(x) .)       (6) 

CAUSAL FILTER 

A filter is said to be causal when its impulse response h(x) 

is zero for negative arguments; that is, 

h(x) - 0  for x < 0 . (7) 

However, h(x) can still be a complex function of x.  In this 

causal case, the real and imaginary parts of the transfer 

function H(f) satisfy a pair of Hilbert transform relationships, 

provided that h(x) does not contain any impulses at the origin; 

see also [3; page 198].  The Hilbert transform of an arbitrary 

complex function G(x) is defined as 
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,,„»>, . 1 f du 5iHi . _i , G(x) ,       (e) 

where the tic mark on the integral sign denotes a principal value 

integral [4; section 3.05] and 9  denotes convolution.  Principal 

value integrals are considered in appendix A. 

In order to derive the Hilbert relations of interest, let 

U(x) be the unit step function, 

(1 for x > 0\ 
U(x) « . (9) 

10 for x < 0) 

Then, because h(x) is causal, transfer function (1) becomes 

H(f) -  dx exp(-i2nfx) h(x) U(x) - r{h(x) U(x)} - 

- r{h(x)} 9  rju(x)} - H(f) 9  [§Mf) + j^f] - 

I H(f) - I H{H(f)} . (10) 

Here, we used the Fourier transform of the unit step function 

U(x) [3; (3-13)] and definition (8).  Equation (10) yields 

H(f) - -i H{H(f)} (11) 

or, more explicitly, 

Hr(f) -   HjH^f)) -   -^ 9  Hi(f) , 

HA(f) - - H{Hr(f)} - - -j^ 9  Hr(f) . (12) 
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We repeat that transfer function relations (12) hold true even 

when impulse response h(x) is complex; only causality is used. 

Analogous properties to (12) hold between the even and odd parts, 

H (f) and H_(f), of the transfer function H(f) as well.  Namely, 

because the Hilbert transform of an even (odd) function is odd 

(even), there follows, for a causal (but possibly complex) h(r), 

He(f) - -i H{Ho(f)} ,    HQ(f) - -i H{He(f)} .      (13) 

If h(x) contains an impulse at the origin, both parts of 

(12) are false, even though h(x) may be causal.  Consider 

h(x) - (a + ib) S(T),    a and b real .        (14) 

Then (1) yields constant transfer function 

H(f) - a+ib, Hr(f) - a, H.(f) - b, He(f) - a+ib, HQ(f) - 0. (15) 

But since the Hilbert transform of a constant is zero 

[4; section 3.05], neither part of (12) is satisfied, and the 

first part of (13) is false.  On the other hand, if 

h(x) - (a + ib) S(T - T) ,    a and b real ,        (16) 

then (12) and (13) are satisfied only if T > 0.  Here, we used 

the facts that 

H{cos(2nfT)} - sin(2nf|T|), H{sin(2nfT)} - -sgn(T) cos(2nfT),(17) 

where sgn(T) is the polarity of T.  Henceforth, we assume that 

components like (14) and (15) are not present in the filters of 

interest; see also [3; page 198]. 
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For a causal filter, (2) and (12) afford a method of 

obtaining the complete transfer function from its real part 

alone, according to 

H(f) - Hr(f) + i H.(f) - 

- Hr(f) - i H{Hr(f)} . (18) 

However, a more attractive approach, computationally, is to use 

Fourier transforms, as follows.  Define inverse Fourier transform 

h(T) • F_1{Hr(f)} - * df exp(i2nfx) Hr(f) (19) 

for any real part H (f).  (The notation h (T) cannot be used 

instead of h(x), because h(x) is not the real part of h(x), nor 

is h(x) necessarily real.)  Substitution of (3) into (19) 

immediately yields 

h(x) - |[h(T) + h*(-x)] ;   h(-x) - h*(x) .       (20) 

(These particular relations in (20) actually hold true for any 

filter h(x), noncausal as well as complex.)  Then because h(x) is 

causal, there follows directly 

(2h(x)  for x > 0^ 
h(x) - { }  - 2 h(x) U(x) .       (21) 

I   0  for T < o; 

In summary, the method for obtaining the complete transfer 

function H(f) from just its real part H (f), for a causal filter, 
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is to perform, in order, the following operations: 

h(x) - F-1{Hr(f)) , 

h(x) - 2 h(x) U(x) , 

H(f) - F{h(x)} . (22) 

This procedure requires two Fourier transforms, which can be 

accomplished very quickly and efficiently by means of two fast 

Fourier transforms.  Furthermore, a fast Fourier transform 

output sweeps out the complete range of argument values, whereas 

the brute force Hilbert transform integral of (18) and (8) 

requires an additional numerical integration for each frequency f 

of interest.  Functions h(x) and h(r) in (22) can be complex. 

An accuracy check on the procedure in (22) is afforded by 

comparing the real part output of the Fourier transform in the 

bottom line with the input H (f) utilized in the top line.  The 

complete set of function values of H (f) for all f is required 

for this procedure; in return, the complete set of values of 

H.(f), for all f, results.  The operations in (22) are linear 

insofar as the overall transformation of H (f) is concerned, and 

so superposition can be used for any breakdown of H (f) into 

components, if desired. 

The rule for obtaining H(f) or H.(f) from H (f), as given in 

(22), applies whether filter H(f) is minimum-phase [1] or not. 

The only prerequisite for the validity of (22) is the causality 

of impulse response h(x). 

If only H (f) were available (instead of H (f)), a more •*  e r 

attractive procedure for obtaining H(f) or H.(f) than using (4) 
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and Hilbert transform (13), is to observe that, in general, for 

any filter, the inverse Fourier transform 

F_1{He(f)} - ' df exp(i2nfx) Hg(f) - |[h(x)+h(-x)] - hg(x). (23 

Here, we used (5), the inverse to (1), and the general definition 

of the even part of an arbitrary complex function. Then, if h(x) 

is causal, we have 

h(x) - 2 he(x) U(x) . (24) 

Thus, the procedure for obtaining H(f) is identical to (22) if we 

replace H (f) and h(x) by H (f) and h (x), respectively. 

ONE-SIDED SPECTRAL FUNCTIONS 

The analogous situation in the frequency domain (to causality 

in the time delay domain) is as follows: if (complex function) 

A(f) is zero for negative arguments, that is, 

A(f) - 0   for f < 0 , (25) 

then a procedure similar to (10)-(11) reveals that the inverse 

Fourier transform of A(f) is given by 

a(x) • r_1{A(f)} - i H{a(x)} . (26) 

That is, in terms of real and imaginary parts, 

ar(x) - - H{a.(x)} ,   a.(x) - H{ar(x)} .       (27) 

The function a(x) is called an analytic waveform, for reasons to 

become apparent shortly. 
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GENERAL SPECTRAL RELATIONS 

For future purposes, the Hilbert transform of a completely 

arbitrary complex waveform b(x), 

bH(x) m  H{b(r)} « -^ 9  b(x) , (28) n      — JIT 

has spectrum (Fourier transform) 

F{bH(T)} - -i sgn(f) B(f) -  { }   ,    (29) 
f-i B(f) for f > (T 

i B(f) for f < 0, 

where B(f) is the spectrum of b(x).  Here, we used the fact that 

the following two functions are a Fourier transform pair 

[3; apply (2-34) to (3-9)]: 

^ *-• -i sgn(f) . (30) 

The left-hand side of (29) is the Fourier transform of the 

Hilbert transform of b(x).  It cannot be labeled as B (f), which 

is the Hilbert transform of the Fourier transform B(f) of b(x). 

The two operations of Hilbert transformation and Fourier 

transformation are not interchangeable, in general. 

It follows from (29) that 

r{b(x) + i bH(x)} - 2 B(f) U(f) , (31) 

which is a one-sided spectrum.  Also, b(x) + i b (T) is an 

analytic waveform.  Waveform b(x) is completely arbitrary here. 

10 
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ANALYTICITY OF TRANSFER FUNCTION 

Consider the causal exponential impulse response 

h(T) - exp(-x) U(x) . (32) 

The corresponding transfer function is 

H(f'-rri2if' (33) 

which has a pole in the upper-half f-plane at f - i/(2n), but 

which is analytic in the lower-half f-plane.  (The lower-half 

f-plane corresponds to the right-half s-plane of Laplace 

transforms.) 

This analyticity of the transfer function H(f) in the lower- 

half f-plane is generally true for causal finite-energy filters, 

as may be seen by the following argument.  Let frequency f be a 

complex variable with real and imaginary parts according to 

f - f  + if..  Then, for a causal filter, (1) can be expressed 

more explicitly as 

+«. 

H(f) -  dx exp(-i2nfrx) exp(2nf.x) h(x) .        (34) 

0 

The first exponential in (34) has magnitude 1 for all T on the 

contour of integration.  And if f. < 0, the second exponential 

term in (34) decays with increasing T, keeping the integral 

convergent, as it was for f. - 0.  That is, transfer function 

H(f) is analytic in the lower-half f-plane for a causal impulse 

response h(x).  Notice, however, that no statements can be made 

11 
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about the locations of the zeros of transfer function H(f) in the 

complex f-plane.  Thus we have 

causal h(x) —>  analytic H(f) in lower-half f-plane .   (35) 

The converse is also true, namely, that analyticity implies 

causality.  To develop this point, express the inverse Fourier 

transform to (1) in the form 

h(r) - " df exp(i2nfx) H(f) - 

Cl 

df exp(i2itfrx) exp(-2nfiT) H(f) ,        (36) 

where contours C, and C~  are depicted in the complex f-plane in 

figure 1.  Because transfer function H(f) is analytic in the 

(crosshatched) region between contours C. and C2, we are allowed 

to move the integration freely between them, as done in (36), 

cl 

fi 
f-plane 

C2 

////// 
analytic H(f) 

////// 

Figure 1. Complex f-Plane Contours 

12 
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without altering the value h(x) of the integral. On contour C,, 

we have f. < 0 everywhere. Therefore, if T < 0 in (36), the 

second exponential decays to zero as contour C2 is moved farther 

down in the f-plane. Because H(f) is analytic in the lower-half 

f-plane, we can move C2 arbitrarily far down, causing the 

integrand of (36) to go to zero, thereby leading to a zero value 

for h(x) whenever x < 0.  Thus, we have 

analytic H(f) in lower-half f-plane —v  causal h(x) .   (37) 

This equation is the converse to (35). 

Because we have already shown in (10)-(12) that a causal 

impulse response h(x) leads to a transfer function H(f) with 

Hilbert transform relations between its real and imaginary parts, 

it follows from (37) that an analytic transfer function H(f) 

leads to the same conclusions.  This means that, for an analytic 

transfer function H(f) in the lower-half f-plane, we can use the 

efficient procedure given in (22), in terms of two (fast) Fourier 

transforms, to find the imaginary part H.(f), given only the real 

part Hr(f). 

For the example given earlier in (33), we have real part 

Hr(f) - =• . 
1 1 + (2n£)* 

Then from (22), we obtain, in order, 

h(x) - | exp(-|x|) ,   h(x) - exp(-x) U(x) ,  H(f) - g - *2||ff , 

which corroborates (32) and (33). 

13/14 
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MINIMUM-PHASE TRANSFER FUNCTIONS 

From this point on, we presume that impulse response h(x) is 

causal and that transfer function H(f) contains only poles and 

zeros.  It then follows from (35) that transfer function H(f) 

has no poles in the lower-half f-plane.  We also assume now that 

H(f) has no zeros in the lower-half f-plane; that is, the filter 

is minimum-phase [1,2,3].  In this case, the function 

Q(f) - - In H(f) (38) 

is analytic in the lower-half f-plane, because the function In z 

is nonanalytic only at z - 0 and z » • in the complex z-plane. 

Accordingly, by analogy to (37), inverse Fourier transform 

q(x) - ' df exp(i2itfx) Q(f) (39) 

is causal.  (An example is given in appendix B.)  Therefore, just 

as shown in (10)-(12), the real and imaginary parts of Q(f), 

Q(f) - Qr(f) + i Q^f) , (40) 

can be found from each other by means of Hilbert transforms.  In 

particular, as in (12), 

Qr(f) - H{Q.(f)} ,  Q^f) - - H{Qr(f)} .       (41) 

Alternatively, according to the sequel to (37), because Q(f) 

is analytic in the lower-half f-plane, the imaginary part Q-(f) 

can be found from real part Q (f) according to procedure (22) 

involving two Fourier transforms. 

15 
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Interesting interpretations of minimum-phase filters, in 

terms of their group delay and rate of energy flow through the 

filter, are given in [5; pages 132-3].  In particular, the 

minimum-phase filter has the smallest group delay of any stable 

filter with specified magnitude transfer function. 

ATTENUATION AND PHASE 

There is another way of describing a transfer function H(f) 

rather than by its real and imaginary parts, which is very useful 

in some applications.  Namely, let 

H(f) - exp[-o(f) - i 0(f)] , (42) 

where 

:ion1 

lift/ 

<x(f) - attenuation 
of filter . (43) 

0(f) • phase sh: 

Reference to (38) and (40) immediately reveals that 

a(f) - Qr(f) ,  0(f) - Q.(f) . (44) 

Therefore, if filter H(f) is minimum-phase, according to the 

discussion in (38)-(41), a(f) and 0(f) can be found from each 

other by means of Hilbert transforms.  In particular, 

0(f) - - H{a(f)} - - •£ •  o(f) . (45) 

(Strictly, this relation is not usable and must be modified to 

allow for attenuations a(f) with logarithmic singularities; for 

16 
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example, see [3; pages 206-8].  This manipulation is discussed 

in appendix C.) 

Alternatively, the procedure in (22) can be employed in the 

form 

g(x) • F_1{a(f)} , 

q(x) - 2 g(T) U(x) , 

a(f) + i 0(f) - r{q(T)} . (46) 

The function g(x) is defined by the inverse Fourier transform in 

the top line of (46).  Phase shift 3(f) for a minimum-phase 

filter is given by the imaginary part of the Fourier transform in 

the bottom line of (46). 

A common alternative descriptor of the frequency behavior of 

a filter is the gain G(f) in decibels, defined as 

6(f) - 20 log1Q |H(f)| . (47) 

Because the attenuation follows from (42) as 

a(f) - - In |H(f)| , (48) 

the gain G(f) and the attenuation a(f) are related by 

G(f) - - ln^°0) a(f) - - 8.686 a(f) . (49) 

Measurement of either one is sufficient to find the other and to 

thereby determine the phase shift 0(f) of a minimum-phase filter. 

17 
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EXAMPLE AND LIMITATION 

We again consider the example given in (32)-(33), namely 

h(x) - exp(-x) U(T) ,   H(f) - 1 4
1
i2nf •        (50) 

The attenuation and phase follow from (42) according to 

o(f) - | ln(l + 4n2f2) , 

0(f) - arctan(2itf) . (51) 

If we attempt to apply the inverse Fourier transform in the top 

line of (46) to the attenuation a(f) in (51), we encounter a 

divergent integral because <x(f) - In | f | as f •• +». 

More generally, if filter H(f) has a zero at a frequency f 

equal to any finite real value, the attenuation o(f) has a 

logarithmic singularity at that real frequency, and the inverse 

Fourier transform in (46) diverges.  Because typical filters very 

often have this feature (and almost always at f - 0 and f - ±m), 

a way must be found to circumvent the divergent part of the 

inverse Fourier transform integral, so that the efficient 

procedure of (46) can be salvaged. 
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SUBTRACTION OF SINGULARITY 

The procedure to be used here is one commonly adopted to 

numerically evaluate convergent integrals with singular 

integrands; it is illustrated by the example 

dx ^^ ,    v < 1 . (52) 
X 

if v is positive, the integrand has an infinite cusp at the 

origin, yet the integral converges, because \> < 1.  We express 

a a a 
r . cosx - i + i  r  cosx - i  r   1     /c,v 
J     x^ J       xv    

+ J dX 3 '     (53) 
0 0 0 

which is allowed, because both integrals converge.  The last 

integral in (53) can be done in closed form, yielding a ~v/(l-v). 

Also, the middle integrand now behaves as x ~v as x •+ 0+, which 

is zero at the origin, because 2-v > 1; this behavior enables a 

straightforward numerical evaluation of the middle integral. 

The key to this procedure is to find a component that can be 

integrated in closed form and that, when subtracted from the 

given integrand, yields a well-behaved residual for numerical 

integration. 
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APPLICATION TO FILTERS 

The way we apply this subtraction procedure to a given 

attenuation a(£) with logarithmic singularities is to break it 

into two parts, 

a(f) - ax(f) + o2(f) , (54) 

where attenuation a.(f) contains all the singular components and 

has a known closed form minimum-phase pair P-(f).  (An example is 

furnished by (50) and (51); some additional examples are listed 

in appendix D. )  Then residual attenuation <x2(f) *s f°und 

according to 

«2(f) - o(f) - 0l(f) (55) 

and is well-behaved for all f.  Residual a2(f) is subjected to 

the repeated Fourier transform procedure detailed in (46), 

resulting in phase shift function (3- (') •  Finally, the complete 

minimum-phase corresponding to the given attenuation o(f) is 

obtained from 

(5(f) - 3x(f) + P2(f) . (56) 

The procedure can be summarized as follows: 

a(f) —y  (5(f)  desired ; 

a^f) + a2(f) —y  (5x(f) + fi2(f)     used .       (57) 

The exact choice of attenuation/minimum-phase pair ou ( f) , 

0,(f) is not critical, except that residual a,(f) must not have 

any singularities and must decay (rapidly) to zero for large f. 
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Of course, the given attenuation a(f) must be known for all f in 

order to apply this (or any) procedure for obtaining minimum- 

phase shift 3(f), whether obtained directly by Hilbert transforms 

or by means of a Fourier procedure.  The actual numerical 

evaluation of the Fourier procedure delineated in (46) is 

accomplished by means of fast Fourier transforms; the details are 

presented in appendix E. 

SHORTCOMING OF HILBERT TRANSFORM 

Suppose that two minimum-phase filters H (f) and H. (f) differ 

only by a complex scale factor: 

Hfc(f) - c Ha(f) . (58) 

Then 

ab(f) - oa(f) - ln|c| , 

p. (f) - (3a<
f) - arg(c) + 2nn ,  n integer .        (59) 

However, if a_(f) and 0(f) are a Hilbert transform pair, a. (f) aa o 

and 6. (f) cannot possibly be (unless c • 1 and n - 0) because the 

Hilbert transform of a constant is zero.  Functions «b(f) and 

6. (f) are both "incomplete," in that attenuation «b(f) contains 

no information about arg(c), while phase Pb(f) contains no 

information about |c|.  This means that the Hilbert transform of 

a given attenuation (phase) yields a phase (attenuation) function 

that can differ from the actual phase (attenuation) of a minimum- 

phase filter by an arbitrary additive constant.  Some information 
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is inherently absent from a given attenuation (phase) function. 

In addition, because the Hilbert transform of a constant is zero, 

additive constants are lost through this transformation.  (The 

situation is somewhat similar for the Fourier transform procedure 

given in (46). ) 

Alternatively, suppose that 

hb(T) - ha(x - T) ,   Hb(f) - Ha(f) exp(-i2nfT) .    (60) 

Then filter H.(f) contains a transfer function component of 

exp(-i2nfT), with corresponding attenuation 0 and phase 2itfT. 

Thus, the attenuation contains no information about a pure time 

delay.  However, it should be noted that this component 

exp(-i2nfT) does not possess poles and zeros at all, but in fact 

has an essential singularity at f • «. 
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APPLICATION TO MEASURED DATA 

In this section, we will apply the previous Fourier procedure 

to a measured pair of attenuation and phase shift functions in 

an effort to determine if the filter is minimum-phase.  The 

particular filter is a J15-1 transducer used as a continuous-wave 

source in the 10 to 900 Hertz range.  The transmitting current 

response of this device is defined as the ratio 

output pressure r 61) 
input current 

and is the transfer function of interest.  The reference level is 

taken as 1 //Pa/Amp.  The measurements procedure include a 

water-path propagation delay (of unknown value) between the 

transducer and a calibrated receiving hydrophone. 

The measured decibel gain, (47)-(49), of transfer function 

(61) is displayed in figure  2 for the range of frequencies from 

30 to 500 Hertz, on a logarithmic frequency abscissa.  Also 

superposed are the decibel gain responses of filters with 1 or 2 

or 3 poles at the origin, which plot as straight lines on this 

type of paper.  This information is required for determining the 

behavior of the filter from 30 Hertz down to f • 0 and is 

necessary because the Hilbert and Fourier procedures both require 

knowledge of the complete attenuation (or gain) for all 

frequencies, in order to determine the value of the corresponding 

minimum-phase shift at just one frequency.  It may be reasonably 

concluded from the fits in figure 2 that the transducer of 

* 
Figures 2 through 11 are collected at the end of this section 
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interest here has a double zero at f - 0. 

In addition, the same fitting procedure has been attempted in 

the neighborhood of 500 Hertz in figure 2, as may be seen by the 

superposition of responses for filters with decays corresponding 

to 0 or 1 or 2 or 3 poles at f • ".  However, the situation is 

rather poor at this upper end of the measured frequency range, 

because, as seen in figure 2, the transducer has not yet 

developed its asymptotic behavior at f • 500 Hertz.  This 

behavior is consistent with the information mentioned above, 

which describes the use of this device as a source up to 900 

Hertz.  Thus, we have a situation where we have insufficient 

measurements to fully apply the theoretical developments 

presented earlier.  Nevertheless, we will attempt to circumvent 

the inadequacy by extrapolating the given measurements into the 

frequency range above 500 Hertz and then using the combination of 

measured and extrapolated gains to determine the minimum-phase 

response. 

PHILOSOPHY OF EXTRAPOLATION 

A situation of frequent occurrence is the following.  We have 

a measured residual attenuation a2(f), but it is available only 

for 0 < f. < f < f~; see (54)-(57).  We presume that attenuation 

a.(f) is even about f - 0.  Call this total frequency range of 

known values, K.  Denote the remainder of the frequency range, 

where «*2(f) is unknown, by U. 

We want to evaluate the minimum-phase corresponding to a2(f), 
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namely 

+ CD 
o, (u) 

P2(f) - - H{a2(f)} - - ^ ' du ^—- . (62) 
_eo 

Our approach is to extrapolate <x2(f) beyond K into the unknown 

frequency range U.  Call this extrapolated function «2e^)' *fc 

exists for all f.  This extrapolation must be rather close to the 

true (unknown) attenuation <*2(f) in U, but a, (f) need not agree 

with a2(f) inside K.  In particular, a, (f) and a2(f) should 

match in value and slope at the boundaries of K. 

Then, we can obtain the following approximation to phase 

(62), namely 

If,  a2(u)   1 f .  a2e(u) e2a(f) " " n  J du r^U " n J du T^T ' 
K U 

1 r a2(u) - a2e(u)    +•    «  (u) 
n J du  r^5 n J du -T-rH   '        <63> 

The first (finite) integral in (63) is done numerically, by 

employing the Fourier procedure presented here.  The second 

integral in (63) is actually divergent and is instead replaced by 

use of a known attenuation/minimum-phase pair, o, if), 02 (f). 

The key to this procedure is a shrewd choice for the 

extrapolated attenuation a, (f).  Several candidates, along with 

the corresponding minimum-phase functions, are listed in appendix 

D. 
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LAPLACE TRANSFORM NOTATION 

For convenience of notation, we employ here the Laplace 

transform of the impulse response, namely 

+• 

L(s) •  dx exp(-sx) h(x) , 

0 

where we have specifically limited consideration to causal 

filters.  The connection with the Fourier transform (1) is 

H(f) - L(i2nf) . (65) 

EXAMPLE A 

(64) 

The first attempted fit to the measured gain in figure 2 is 

by means of filter 

L(s) - (, ; a)(s + b) ' (66> 

with constants a - 260, b - 330, and c - - .55E8.  This filter 

has the desired double-order zero at the origin, but does not 

decay for large frequencies.  The gain of (66) is superposed on 

the measured gain in figure 3; it is seen that the constants have 

been chosen to give a fit that matches in value and slope for 

snail frequencies and that matches the measured gain value at 

500 Hertz. 

The difference in decibels between the measured gain and the 

fitted gain is displayed in figure 4; it goes to zero at 30 and 

500 Hertz and is assumed to be zero outside this range.  This 
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assumption is not likely to be correct for f greater than 500 

Hertz, but it is necessary in order to proceed with the numerical 

manipulations.  The difference in attenuations, a2(f) of (55), is 

available by dividing the result in figure 4 by -8.686; see 

(47)-(49). 

The residual attenuation c%2 (f) is subjected to the cascaded 

Fourier procedure of (46), and the resultant phase 02*
f^ is added 

to the minimum-phase (3,(f) corresponding to (66).  The final 

total phase 3(f) is shown in figure 5, with the label A&T, 

meaning analytic and transform, that is, P,(f) plus 02(f). 

Superposed on this figure is the measured phase, with the label 

M&D, meaning measured and time-delay adjusted.  Recall in the 

discussion surrounding (61) that there is an unknown time delay, 

between the transducer and receiving hydrophone, included in the 

measurements taken.  Accordingly, a selection of time delay was 

made that yielded the best eyeball fit of the two phases over 

the range of frequencies from 0 to 400 Hertz in figure 5; this 

corresponds to an additive linear phase function of frequency, as 

indicated by example (60).  The time delay was 1.43 ms. 

The agreement between the minimum-phase and the measured 

results in figure 5 allow us to conclude that the J15-1 

transducer is indeed a minimum-phase filter, at least over the 

frequency range up to 400 Hertz.  The difference between the two 

results is 17° at 500 Hertz, which is significant.  However, the 

reason for this discrepancy is undoubtedly due to the fact that 

(66) is not the correct fit for f > 500 Hertz, because (66) has 

no decay for large frequencies. 
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EXAMPLE B 

In an effort to find a better phase match, another fit was 

also tried, namely filter 

c s2 
Ms) -  — = ~- , (67) 

(s + aQ)[(s + ar + t/] 

with constants a  - 4000, a - 260, b - 400, and c - - .275E12. 

The measured and analytical decibel gains are plotted in figure 

6, while the decibel difference is plotted in figure 7.  The 

corresponding two phase plots, obtained by an identical procedure 

to that described in example A above, are presented in figure 8. 

Now, the difference in the two phase curves at 500 Hertz has 

decreased, but only slightly, to 14°.  Apparently, the unmeasured 

decibel gain, in the frequency range above 500 Hertz, is causing 

inaccurate calculations of the minimum-phase in the region just 

below 500 Hertz, due to our inability to correctly extrapolate, 

by means of (66) and (67), to what the filter gain truly was in 

that frequency range.  This supposition is consistent with the 

observation that the minimum-phase at a particular frequency is 

largely governed by the (rate of change of the) attenuation in 

the neighborhood of that frequency [2; page 345].  The agreement 

in phase results for the lower frequencies comes about because 

errors in gain measurements above 500 Hertz have a much reduced 

effect on the calculated phase at low frequencies. 
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EXAMPLE C 

In an attempt to justify this conjecture, an estimate of the 

unmeasured gain in the frequency range from 500 to 900 Hertz was 

made and is illustrated in figure 9.  A droop of 7 dB, centered 

at 565 Hertz, has been added and is annotated by the phrase 

"augmented".  The fit is again (66), with the same constants as 

used for example A, and is superposed in the figure. 

The two phase curves are illustrated in figure 10.  Now, the 

discrepancy between the two results is negligible (within 

measurement error) all the way up to 500 Hertz, the maximum 

frequency at which the phase was measured.  Thus, we feel 

justified in concluding that the device under investigation is 

indeed a minimum-phase filter, at least over the measured 

frequency range up to 500 Hertz. 

LIMITED FREQUENCY RANGE 

It has been stated above that the measured filter appears to 

be minimum-phase in a particular frequency range.  Strictly, this 

is not a valid concept; but it is necessary to allow for it in 

practice, where filter responses cannot possibly be measured for 

all frequencies.  For example, suppose that the transfer function 

H(f) has a collection of poles and zeros in the upper-half 

f-plane, all fairly near the origin f - 0.  In addition, let H(f) 

have a pole-zero pair far away from the origin, but symmetrically 

located about the real f axis, so as not to affect the gain or 

attenuation; see the pair near f • f, in figure 11. 
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Obviously, the filter in figure 11 cannot be minimum-phase, 

because it has a zero in the lower-half f-plane.  Yet, its 

measured phase, for frequencies less than f., would be 

indistinguishable from that of the minimum-phase filter that 

does not contain that extra pair.  Thus, we would reasonably 

conclude, upon the basis of the measurements made, that the 

filter is "minimum-phase for f < f»."  Furthermore, this is a 

practically useful concept because compensation of the filter in 

this same frequency range is certainly possible and allowable. 

In other words, measurement in a limited frequency range only 

allows us to make conclusions in that same range; in fact, the 

situation is slightly worse than that, because the edges of the 

range may also be open to question. 
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SUMMARY 

For a minimum-phase filter, the phase shift 6(f) can be found 

from the attenuation a(f) by means of two cascaded fast Fourier 

transforms, once the logarithmic singularities in a(f) have been 

subtracted out and handled analytically. A partial accuracy 

check is automatically built into the procedure, because the real 

part of the output should agree with the given input; the 

imaginary part of the output is the desired minimum-phase result. 

This Fourier approach yields the entire phase curve for all 

frequencies, not just a point-by-point output, as a Hilbert 

transform numerical integration would give. 

In order to use this procedure, the attenuation must be 

measured for all frequencies, or at least for large enough and 

small enough frequencies that the asymptotic behavior is well 

developed and obvious.  A plot of the attenuation (or decibel 

gain) on a logarithmic frequency abscissa is recommended for this 

purpose, because the filter magnitude characteristic should 

approach a straight line with a decay equal to a multiple of 

6 dB/octave in the neighborhood of zero and infinite frequencies. 

Failure to make a complete set of measurements will lead to the 

need for extrapolation and the attendant errors that can occur 

with such a procedure, as illustrated here.  Furthermore, 

statements about the minimum-phase behavior of a particular 

filter can only be made (with)in that same frequency range. 
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APPENDIX A. PRINCIPAL VALUE INTEGRAL EVALUATION 

Through a change of variable, a principal value integral can 

be put in the form 

b 

I - { dt ^ilL  ,  where g(0) *  0 . (A-l) 

-b 

Limit b can be finite or infinite.  (For example, (8) fits this 

form when we let g(t) - G(x-t)/n.)  Although (A-l) is a principal 

value integral, it can be expressed as (ordinary integrals) 

b     ,. •. b     ...   b r   9n( t)    r   g (t)   r .. 
I -   dt -^— - 2j dt -^-r-  -   21 [g(t) - g(-t)] ,   (A-2) 

-b 0 0 

where gQ(t) is the odd part of g(t); see definition (5).  This 

form can be used for numerical evaluation whether b is finite or 

not.  If b is infinite, the integrand of the last integral in 

(A-2) maintains the same decay with t as original integral (A-l). 

This is not true of the sometimes recommended alternative form 

i - jdt q(t) = s(0) , (A-3) 

-b 

which decays very slowly with t, although it is finite at the 

origin t - 0.  However, another alternative that advantageously 

uses this subtraction device is given later in (A-l]). 

A simple example of (A-1)-(A-2), for b finite, is furnished 

by the integral 
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I - J dt ^P - 2]  dt *±lM±i   , (A-4) 
-b 0 

the latter of which has a well-behaved integrand at t • 0. 

DERIVATIVE EVALUATION 

In general, the last integrand in (A-2) behaves as 

9(t) " g("U - 2 g'(0)  as t - 0 . (A-5) 

Therefore, in order to use (A-2), it is necessary to have g'(0). 

If all we can easily evaluate is g(t), and not its derivative 

g'(0), a good approximation is available through the following 

device.  We know that g'(0) is approximated by 

9(c) : 9(~e)  for small c . (A-6) 
1 c 

However, if e is too large, this is a poor approximation, whereas 

if e is too small, round-off errors cause numerical stability 

problems.  But we know that 

g(e) - 9(-e) _ gr(0) + 1 g,,, (0) e2 + 0(c4)  as c -» 0 .  (A-7) 

So, letting F(e) be the left-hand side of (A-7), we have, to 

second order, 

F(c) - AQ + A. e2 } 
_ \    where A and A. are unknown .   (A-8) 

F(c/2) - AQ + Ax   eV^J 
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The desired unknown follows easily from (A-8) as 

AQ « 
4 F(g/2> - F(E) ,   «M0) • (A-9) 

This procedure is an extrapolation to the limit; it uses e/2 as 

the smallest argument of F. 

A program for the evaluation of g'(t) at general t is 

furnished here in BASIC; it requires specification of a tolerance 

Tol in line 70 of the function subroutine FNDerivl. 

10  INPUT T 
20 Derl-FNDerivl(T) 
30  PRINT T,Derl    !  t,g'(t) 
4 0  END 
50  ! 
60  DEF FNDerivl(T) !  -g'(t) via extrapolation 
70  Tol-l.E-6      !  tolerance 
80  E-.2 !  epsilon (start) 
90  E-E*.5 
100 V1-V2 
110 V2-(FNG(T+E)-FNG(T-E))/(2.*E) 
120 V-V2+(V2-Vl)/3. 
130 IF ABS(V2/V-1.)>Tol THEN 90 
140 RETURN V 
150 FNEND 
160 I 
170 DEF FNG(T) 
180 RETURN EXP(T)   !  example exp(t) 
190 FNEND 

An application of this program to the exp(t) example in line 180, 

at argument t - 1.1, yielded an error of -7.8E-13. 

If we instead kept terms to fourth order in (A-7), an 

extension to (A-8) yields approximation 

g'(0) - ^|[64 F[|] - 20 F(|) + F(e)] . (A-10) 

This procedure uses e/4 as the smallest argument of F. 
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AN ALTERNATIVE SUBTRACTION PROCEDURE 

We now express (A-l) in the form 

x . | dt stilL . j dt aiil + J dt sit* , (A_n) 
-b        -a R 

where limit a is chosen for convenience and R is the union 

(-b,-a) U (a,b).  Then, as done in (A-3), 

i - j dt g(t) = g(0) + j dt alii . (A_12) 

-a R 

These are both ordinary integrals now.  The first integrand is 

finite at t - 0, with value g'(0), while the second integrand 

maintains its original decay as x -* +b. 

SECOND DERIVATIVE EVALUATION 

The procedure presented in (A-5)-(A-9), for the approximate 

evaluation of first derivative g'(0), can be extended to the 

second derivative g"(0) as follows.  We know that 

g(e) + g(-c) m  g(Q) + 1 g.(0) e2 + 0(c4}  as e -» 0 .   (A-13) 

Therefore, 

g(e) ±  g(-e) - 2g(0) u gm{Q)  + 0(e2} _       (A_U) 
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Letting D(e) be the left-hand side of (A-14), we have, to second 

order, 

D(c) - BQ + B^   c       \ 
j     \    where B  and B. are unknown 

D(e/2) - Bo + B1   cz/4j 
(A-15) 

The desired solution is 

B  - 4 P(£/2> ~ D(C> . g-(0)  . 
o 3 (A-16) 

This is an extrapolation to the limit; it uses e/2 as the 

smallest argument of D.  A program for the evaluation of g"(t) at 

general t is given below in BASIC; it requires specification of a 

tolerance Tol in line 70 of the function subroutine FNDeriv2. 

-g"(t) via extrapolation 
tolerance 
epsilon (start) 

10  INPUT T 
20  Der2-FNDeriv2(T) 
30  PRINT T,Der2    !  t,g"(t) 
40  END 
50  I 
60  DEF FNDeriv2(T) 
70  Tol-l.E-6 
80  E-.2 
90  G2-2.*FNG(T) 
100 E-E*.5 
110 V1-V2 
120 V2-(FNG(T+E)+FNG(T-E)-G2)/(E*E) 
130 V-V2+(V2-Vl)/3. 
140 IF ABS(V2/V-1.)>Tol THEN 100 
150 RETURN V 
160 FNEND 
170 I 
180 DEF FNG(T) 
190 RETURN EXP(T)   I  example exp(t) 
200 FNEND 

An application of this program to the exp(t) example in line 190, 

at argument 1.1, yielded an error of 1.6E-11. 
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APPENDIX B. FOURIER TRANSFORM OF GENERALIZED FUNCTION 

We are interested in finding the Fourier transform of the 

generalized function 

exP(;aT) U(T) ,   a > 0 , 

where U(x) is the unit step function.  Letting w - 2nf, the 

integral of interest is 

(B-l) 

r Ht 
I -  — exp(-ax) U(x) exp(-iu)-c) - 

j — (exp(-ax) -1+1) U(T) exp(-iwx) - 
T 

+ • 

- -  Si u - exp(-ar)] exp(-io)x) +  ^1 u(T) exp(-iwx) - 

. fa + i u"!   f.n    ( ui\       ,   u   _, 1       , - -,» " M-nH " [X2 S,>nl2ii)   + ln 2T  + C J -      (B"2) 

. n - - ln(a + iw) + ln(iw) - ij  sgn(co) - ln|w| + ln(2n) - C. (B-3) 

In (B-2), we used [4; page 334, 3.434 2] and [6; page 43, row 3, 

column 3, with m - 1].  But since 

ln(iw) 
in/2  +  ln|w|     for  to >  0 

l-in/2  +  In | <»> |     fo 

r to >  o\ 

r  w <   0) 
+   i2nn  - 

ij sgn(w)   +  ln|to|   +  i2nn   ,     n  integer   , (B-4) 
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we  can express   (B-3)   as 

I  -  -  ln(a +  i<*>)   + C   ,     where  C -  ln(2»t)   -  C   +  i2itn   .        (B-5) 

Thus, we have the Fourier transform pair 

exp(-ax) U(T) ^—y  _ ln(a + i2jtf) + c (B_g) 
T 

where C is an arbitrary constant. The reason for the presence of 

C is that the generalized function — U(x) is indeterminate within 

an additive arbitrary multiple of the delta function 6(x). 

For the example in (33) of H(f) - 1/(1 + i2nf), we have 

Q(f) - ln(l + i2nf).  Application of pair (B-6), with a - 1, to 

(39) then yields causal function 

q(T) . _ ex£izliu(T) . (B_7) 
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APPENDIX C. HILBERT TRANSFORM MANIPULATION 

It was noted below (45) that the Hilbert transform of 

attenuation <x(f) encounters integrals with logarithmic infinities 

and must be handled more carefully.  This problem is treated in 

[3; pages 206-8], by dividing the attenuation by a factor that is 

quadratic in f, rather than linear.  In current notation, that 

result is [3; (10-67)] 
+ CB 

3(f) «£Jdu g(u) 

u2 - f2 ' 
(C-l) 

If we utilize the property employed in [3; page 208, line 2], 

namely that attenuation o(f) is even, we can develop (C-l) as 

+• 

6(f) - ^ 
2f 
n du g(u) 

u2 - f2 

+• 

- - —  du a(u) [7  + •r 1 - n J U - u   f + u) (C-2) 

+• +• 
1 du   «(u! _ i r du   «(ui m 

f-u  n J   f + u (C-3) 

+• 

--H du a(u) 
f-u -H dv a(-v) f - v 

--H du a(u) 
f-u - - H{a(f)} (C-4) 
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The step leading from (C-2) to (C-3) presumes that both of 

the latter integrals converge separately, which need not be the 

case for attenuations a(f); this is the reason for the quadratic 

denominator adopted in (C-l), which guaranteed convergence of 

that integral. 

Rather than using Hilbert transforms and having to employ the 

method of (C-l), we have resorted instead to the use of Fourier 

transforms, as outlined in (46).  Of course, a similar problem 

arises there, as mentioned in the sequel to (51).  The method of 

circumventing the difficulty, in the Fourier approach, is to 

subtract out the singularities and handle them analytically, as 

described in (54)-(57). 

The justification of this procedure, using modified Hilbert 

transform (C-l) as a starting point, is as follows.  Express 

given attenuation a(f) in two parts, as in (54), where residue 

<x2 (f) has a convergent Hilbert transform integral 

i   du j^—- - H{a2(f)}  for all f .        (C-5) 
— CO 

The phase shift 0(f) corresponding to attenuation a(f) is then 

given by sum (56), where, following (C-l), 

f r    al(u) 

*l(f)  « l*"J~? (C~6) 

and P2(
f' is available as the negative of (C-5).  The proof of 

this last claim follows immediately from the derivation in 

(C-l)-(C-4) if we replace a(f) and 3(f) everywhere by «2(f) and 
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0-(f), respectively.  This is legitimate because the existence of 

(C-5) for residual attenuation o2(f) now allows the separation 

into two convergent integrals, as done in (C-3). 

We do not actually use (C-5) or (C-6).  Instead, (C-6) is 

accomplished by using known closed form attenuation/minimum-phase 

pairs for a.(f) and @.(f), while (C-5) is replaced by the Fourier 

approach given in (46), with a2^ and *Mf* substituted for o(f) 

and 0(f), respectively.  The inverse Fourier transform integral 

in the top line of (46), but now in terms of a2(f), is 

convergent. 

(For interest, an example of the application of (C-6) is 

afforded by attenuation-phase pair (51).  This fact is 

immediately verified by use of [4; 4.295 8].) 
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APPENDIX D. EXAMPLES OF ATTENUATION/MINIMUM-PHASE PAIRS 

In this appendix, we list a few attenuation/minimum-phase 

pairs that can be used in the subtraction procedure presented in 

(54)-(57) to eliminate the divergent integrands encountered.  For 

convenience of notation, we employ the Laplace transform of the 

impulse response, namely 

L(s) -   dr exp(-sx) h(x) , (D-l) 

0 

where we have specifically limited consideration to causal 

filters.  The connection with the Fourier transform (1) is 

H(f) - L(i2nf) . (D-2) 

In the following, a, b, and c are real positive constants, and 

u - 2it£. 

EXAMPLE 1: 

L(S) s + a ' 

a(f)   - j ln(a2  + w2)   -  ln(c)   ,     3(f)   - arctan(w/a)   .       (D-3) 

In  the   limit   as   a   -»   0+, 

cc(f)   -  ln|fa>|   -  ln(c)   ,     0(f)   - | sgn(»)   . (D-4) 
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EXAMPLE 2 

C s 
Ms) -   , 

s + a 

o(f) - j ln(a2 + w2) - ln|w| - ln(c) , 

6(f) - arctan(eo/a) - j  sgn(w) . (D-5) 

EXAMPLE 3 

L(S) (s + a)(s + b) ' 

o(f) - | ln(a2 + w2) + j ln(b2 + u>2) - ln|u>| - ln(c) , 

0(f) • arctan(w/a) + arctan(w/b) - ^ sgn(a>) .      (D-6) 

This attenuation reaches a minimum at w - (ab) , at which point 

the phase goes through zero. 

EXAMPLE   4: 

L(s) 2 2    ' (s  +  ar  +  bz 

o(f)   - j ln[(a2  +   (w + b)2]   + j ln[a2  +   (u - b)2]   -  ln(c)   , 

0(f)   -  arctan (*-=-£)   • arctanp-t-*)   . (D-7) 
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APPENDIX E. NUMERICAL EVALUATION OF (46) 

We repeat here the cascaded Fourier transform operations 

listed in (46): 

S(T) • F_1{a(f)} , (E-l) 

q(x) - 2 g(T) U(x) , (E-2) 

a(f) + i 3(f) - F{q(x)} . (E-3) 

We limit consideration to the case where attenuation a(f) is 

even, which is the typical practical situation.  Also, we weight 

the inverse Fourier transform in (E-l) by real symmetric window 

W(f), which is zero for |f| > MA.  We then get approximation 

+ 00 

2a(x) •   df exp(i2nfT) a(f) W(f) - 
— 00 

+C0 

- 2 Re   df exp(-i2nfx) a(f) W(f) - 

MA 

2 Re  df exp(-i2nfx) a(f) W(f) 

M 
2 Re YH   sn A exp(-i2nnAT) a(nA) W(nA) • QW(T) ,   (E-4) 

n-0 D 

where we sample in frequency f with increment A.  We also use 

some integration rule like trapezoidal or Simpson; for example, 

the trapezoidal rule has s  • 1, except for s  - 6„ • 1/2. 
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The approximation O\(T), defined by the bottom line of (E-4), 

has period 1/A in T.  Therefore, we compute it at the points 

T-JT? for 0 < m < N - 1 , (E-5) 

which cover a full period of gb(T).  There follows 

M 
SblN?) - 2b  Re Cl Sn exP(-i2nnm/N) «(nA) W(nA) ,      (E-6) 

which is an N-size fast Fourier transform of M + 1 data points. 

Any surplus points can be collapsed, if desired, without loss of 

accuracy; see [7; pages 4-5], for example. 

Operations (E-2) and (E-3) can be combined to read 

+ 00 

Q(f) - o(f) + i (5(f) - 2 * dx exp(-i2nfx) g(r) .    (E-7) 

0 

Because all we have available is approximation g. (T) from (E-4), 

we adopt the following approximation to Q(f), based on (E-7): 

+• 

Qa(f) • 2  dr exp(-i2rtfx) gb(r) 

.5/A 

2  dx exp(-i2nfx) Hb(x) - (E-8) 

0 

2 P wm g| «p(-i2«£J) ^(gf) - Qb(f) .     (E-9) 
m—u 
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where w  is an integration weight.  The integral in (E-8) was m 

limited to . 5/A in x, because approximation 3. (x) in (E-4) is 

only available up to that limit without aliasing. 

The period of the final approximation Qb(f) in (E-9) is NA in 

f.  Therefore, we limit its computation to the values 

Qb(nA) - jjf I_] wm exp(-i2nnm/N) SLb (^f)  for 0 < n < N-l . (E-10) 
m«0 

This can be accomplished as an N-size fast Fourier transform of 

N/2 + 1 data points.  The final approximation to desired phase 

0(f) in (E-7) is available as the imaginary part of (E-10), at 

frequencies f - nA.  In addition, the real part of (E-10) should 

be in very good agreement with specified attenuation values 

(ot(nA) W(nA)} used in (E-6); this serves as an accuracy check on 

the complete procedure.  Equations (E-6) and (E-10) are the final 

results.  Strictly, (E-6) should be applied only to the residual 

attenuation a2{^)   defined in (55); then (E-10) furnishes an 

approximation to a2(f) + i 32(f).  A program in BASIC for the 

Hewlett Packard 9000 computer, for the procedure given above, is 

presented below. 
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PROCEDURE APPLIED 
OF FREQUENCY 

SAMPLING INCREMENT 
MAXIMUM FREQUENCY 
SIZE OF FFT 
FILTER PARAMETERS 
FOR 
EXAMPLE C 

10 ! NUSC TR 8667, FOURIER 
20 ! TO REAL EVEN FUNCTION 
30 Deltaf=5. 
40 Fmax=900. 
50 N*16384 
60 0=269. 
70 B«330. 
80 C--.55E8 
90 COM A,B,C 
100 REDIM Cos(0:N/4),X<0:N-l>,Y<0:N-1> 
110 DIM Cos<4096>, X<16384>,Y<16384>,Realeven<25000>,Phase(6:100> 
120 DOUBLE N,M,Ns,Ms,N2,M2            !  INTEGERS 
130 T=2.*PI/N 
140 FOR Ns*0 TO N/4 
150 Cos<Ns>=COS<T*Ns>                  !  QUARTER-COSINE TABLE 
160 NEXT Ns 
170 M=Fmax/Deltaf 
180 REDIM Realever,(0:!1) 
190 CALL Input real even'De1taf,Fmax,Realeven<*>>    !  RESIDUAL 
200 MAT X=<0.)~                         !  ATTENUATION ALPHA2 
210 MAT Y*<0.) 
220 X<0) = .5*Realever.<0> 
230 Ms=M MODULO N 
240 X(Ms>=.5*Realeven<M> 
250 FOR Ns=l TO M-l 
260 Ms=Ns MODULO N 
270 X<Ms>=X<Ms>+Realeven<Ns> 
280 NEXT Ns 
290 CALL Fftl4<N,Cos<*>,X<*>,Y<*>> 
300 N2=N/2 
310 GINIT 
320 PLOTTER IS "GRAPHICS" 
330 GRAPHICS ON 
340 WINDOW -N2,N2,-6,2 
350 LINE TYPE 3 
360 GRID N/8,1 
370 PRINT "FOURIER TRANSFORM <TIME DOMAIN) 
380 FOR Ns=-N2 TO N2 
390 Ms-Ns MODULO N 
400 PLOT Ns,LCT<ABS<X<Ms>)+l.E-99> 
410 NEXT Ns 
420 PENUP 
430 PAUSE 
440 MAT Y«<0.) 
450 T=4./N 
460 FOR Ms«0 TO N2 
470 X<Ms)«X<Ms)*T 
480 NEXT Ms 
490 X(0>«X<0>*.5 
500 X<N2>-X<N2>#.5 
510 FOR Ms=N2+l TO N-l 
520 X<Ms>=0. 
530 NEXT Ms 
540 CALL Fft14<N,Cos<*),X<*),Y<*)> 
550 M2=M*2 

IN FREQUENCY 

COLLAPSING 

FOURIER TRANSFORM 
INTO TIME DOMAIN 

!  TIME DOMAIN FUNCTION 

!  2 Deltaf * 2 /   <N DeltaO 

!  DOUBLE FOR POSITIVE TIME 

•  ZERO FOR NEGATIVE TIME 

!  FOURIER TRANSFORM 
!  INTO FREQUENCY DOMAIN 
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560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
670 
680 
690 
700 
710 
720 
730 
740 
750 
760 
770 
780 
790 
888 
810 
820 
830 
840 
850 
868 
870 
880 
890 
900 
910 
920 
930 
940 
950 
960 
970 
980 
990 
1000 
1010 
1020 
1030 
1040 
1050 
1060 
1070 
1080 
1090 

GCLERR 
WINDOW 0,112,-1,1 
LINE TYPE 3 
GRID N/16, .2 
PRINT "ORIGINAL INPUT (FREQUENCY DOMAIN)" 
FOR Ns-0 TO MIN(M,N2> 
PLOT Ns,Realeven(Ns> !  ORIGINAL INPUT 
NEXT Ns 
PENUP 
PAUSE 
LINE TYPE 1 
FOR Ns-0 TO M2 
PLOT Ns,X(Ns) !  F-T-F APPROXIMATION 
NEXT Ns 
PENUP 
PAUSE 

DATA -38.6,-48.2,-54.8,-60.4,-76.2,-82.1,-94.5,-103.8,-109.1,-117.1 
DATA -124. 1,-134.0,-143.1,-152.9,-163.1,-172.4,179.1,171.1,164.2,157.9 
DATA 152.8,147.1,142.8,135.8,131.9,128.7,122.8,118.7,115.1,110.6 
DATA 105.9,103.4,102.8,99.9,98.6,93.8,93.1,91.2,89.6,89.5 
DATA 89.6,89.6,89.2,88.1,85.6,84.5,82.0,81.1,79.0,74.7 
DATA 71.4,66.5,61.3,55.1,48.1,41.6,34.0,29.3,22.0,16.1 
DATA 12.2,5.7,2.4,-3.1,-6.5,-11.3,-16.2,-21.2,-25.7,-29.7 
DATA -33.4,-37.0,-40.7,-43.5,-47.0,-49.5,-51.6,-54.1,-56.2,-59.4 
DATA -61.0,-62.4,-64.2,-66.7,-68.7,-71.4,-74.6,-78.1,-81.4,-83.8 
DATA -88.7,-91.3,-95.0,-98.7,-103.1 

i 

READ Phase(*) 
FOR Ns=22 TO 100 
Phase(Ns)-Phase(Ns)-360. 
NEXT Ns 
MAT Phase = Phase*<-PI/180. ) 

T-2.*PI*Deltaf 
FOR Ns-0 TO N2 
W«T*Ns 
Phaseapp = ATN((W-B)/'A)+ATN(<W + B>/A> 
X(Ns)=Phaseapp+Y(Ns> ! 
NEXT Ns ! 
GCLEAR 
WINDOW 0,180,0,PI*1.25 
LINE TYPE 1 
GRID 20,PI*.25 
PRINT "PHASE (FREQUENCY DOMAIN)" 
FOR Ns-0 TO 180 
PLOT Ns,X(Ns) 
NEXT Ns 
PENUP 
LINE TYPE 3 
FOR Ns-6 TO 100 
PLOT Ns,Phase(Ns)-Ns*.0448 
NEXT Ns 
PENUP 
PAUSE 

END 
! 

!  MEASURED PHASE IN DEGREES 

!  UN-WRAPPING OF PHASE 

MEASURED PHASE IN RADIANS 

! PHASE BETA1 OF APPROX. 
CALCULATED PHASE IN RADIANSt 
BETH - BETA1 + BETA2 

!  PHASE VIA FOURIER PROCEDURE 

MEASURED PHASE WITH 
TIME DELAY CORRECTION 
OF 1.43 MILLISECONDS 
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jlS    •^"^^Sr^>^^   M<.2M4-163S4, 0 SUBS 
H20    DOUBLE II 12 13 14  5 16 17 18  9 M!*???8/ 2^31 = 2.147,483,648 
1130    IF N-l THEN SUBEXIT     '  *  '  ' "^U1'U2'! 13» Il4.«-<«« 13> 
H40    IF N>2 THEN 1220 
1150    R=X<0>+X<1) 
H60    X<1>-X<8>-X<1> 
1170    X<0)=fl 
1180    fl=Y(0)+Y<l) 
1190    Y<1)«Y<0>-Y<1> 
1200    Y<0>»fi 
1210    SUBEXIT 
1220    R*L0G(N>/|_0G<2. > 
1230    Log2n=fl 

Hit 1^ D!s<fi-Log2n)<l.E-8 THEN 1270 
l"! PRUSE  " ""'N;"IS N0T ° P°WER °P *'>    "SALLOWED." 
1270 N1=N'4 
1280 N2-N1+1 
1290 N3=N2+1 
1300 N4=N3+N1 
1310 FOR 11=1 TO Log2n 
1320 I2 = 2MLog2n-Il) 
1330 13=2*12 
1340 I4 = N-"I3 
1350 FOR 15=1 TO 12 
1360 I6=<I5-1)*I4+1 
1370 IF I6<=N2 THEN 1410 
1380 fll=-Cos<N4-I6-l) 
1390 fi2=-Co$<I6-Nl-l> 
1400 GOTO 1430 
1410 fll=Cos<I6-l> 
1420 R2=-Cos(N3-I6-l) 
1430 FOR 17=0 TO N-I3 STEP 13 
1440 18=17+15-1 
1450 19=18+12 
1460 T1=X<I8> 
1470 T2=X<I9> 
1480 T3=Y<I8) 
1490 T4«Y<I9) 
1500 R3-T1-T2 
1510 fi4=T3-T4 
1520 X<I8>«T1+T2 
1530 Y<I8)«T3+T4 
1540 X<I9)«fll#fl3-fl2»fi4 
1550 Y<I9>«fll#R4+fl2#R3 
1560 NEXT 17 
1570 NEXT 15 
1580 NEXT II 
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1590 Il=Log2n+l 
1600 FOR   12=1   TO   14 
1610 L<I2-1>=1 
1620 IF   I2>Log2n   THEN   1640 
1630 L<I2-1>=2MI1-I2> 
1640 NEXT 12 
1650 K-0 
1660 FOR 11=1 TO L<13> 
1670 FOR 12=11 TO L<12> STEP L(13> 
1680 FOR 13=12 TO L<11> STEP L<12> 
1690 FOR 14=13 TO L<10> STEP L<11> 
1700 FOR 15=14 TO L<9) STEP L<10> 
1710 FOR 16=15 TO L<8> STEP L<9) 
1720 FOR 17=16 TO L<7> STEP L<8> 
1730 FOR 18=17 TO L(6> STEP L<7> 
1740 FOR 19=18 TO L<5> STEP L<6> 
1750 FOR 110=19 TO L<4> STEP L<5> 
1760 FOR 111=110 TO L<3> STEP L<4> 
1770 FOR 112=111 TO L<2> STEP L<3) 
1780 FOR 113=112 TO L<1> STEP L(2) 
1790 FOR 114=113 TO L<0) STEP LCI) 
1800 J=I14-1 
1810 IF K>J THEN 1880 
1820 fi=X<K> 
1830 X<K)=X<J> 
1840 X<J)=fl 
1850 R=Y<K> 
1860 Y<K>=Y<J> 
1870 Y<J>=R 
1880 K=K+1 
1890 NEXT 114 
1900 NEXT 113 
1910 NEXT 112 
1920 NEXT 111 
1930 NEXT 110 
1940 NEXT 19 
1950 NEXT 18 
1960 NEXT 17 
1970 NEXT 16 
1980 NEXT 15 
1990 NEXT 14 
2000 NEXT 13 
2010 NEXT 12 
2020 NEXT II 
2030 SUBEND 
2040 I 
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2050 SUB Input_real_even<Delt*f,F 
2060 DOUBLE Ns~ 
2070 ALLOCATE Db<6:180> 
2080 DATA 41.3,44.3,46.1,47.6,49. 
2090 DATA 57.0,57.4,57.9,58.6,59 
2100 DATA 58.6,58.1,58.2,58.1,58 
2110 DATA 56.6,56.4,56.3,56.2,55. 
2120 DATA 55.2,55.7,55.7,56.1,56 
2130 DATA 59.0,59.7,60.3,60.7,60 
2140 DATA 60.7,60.6,60.4,60.2,60 
2150 DATA 58.5,58.3,57.8,57.5,57. 
2168 DATA 55.7,55.5,55.6,55.6,55 
2170 DATA 55.4,55.0,55.0,55.0,54. 
2180 REDItl Db<6: 100) 
2190 READ Db<*> 
2200 MAT Db=Db+<100.> 
2210 REDIM Db<6:180) 
2220 FOR Ns=101 TO 180 
2230 F=De!taf*Ns 
2240 Tl«<F-550.)*.04 
2250 T2=<F-580.>#.04 
2260 Db<Ns>=154.8-5.*EXP<-Tl*Tl> 
2270 NEXT Ns 
2280 MAT Realeven=<0.) 
2290 COM A,B,C 
2300 A2=A*A 
2310 B2=B*B 
2320 C2=C*C 
2330 D1=<A2+B2)*<A2+B2> 
2340 D2«2.*<A2-B2> 
2350 T*2.*PI*De1taf 
2360 FOR Ns«6 TO 180 
2370 W=T*Ns 
2380 W2«W*W 
2390 W4=W2*W2 
2400 P«C2*W4/(D1+D2*W2+W4> 
2410 Atten*pp=-.5*L0G<P> 
2420 Atten-Db<Ns><"(-8.686> 
2430 R**l»uen(Ns)«Atten-Atten*pp 
2440 NEXT Ns 
2450 SU8END 

max,Realevfn(*)) 

I  30:900 HZ 
9,51.4,52.9,54.4,54. 
0,59.1,59.0,58.9,58. 
0,57.9,57.8,57.2,56. 
7,55.6,55.4,55.0,54. 
1 j JO • o j JOI 7j D(  • J) Do. 

8,56.3 
9,58.8 
9,56.7 
9,55.2 
3,58.6 
0,60.9 
3,58.7 
1,55.9 
6,55.3 

!  MEASURED DB GAIN 

!  AUGMENTED DB GAIN 

-5.*EXP<-T2*T2> 

APPROX. ATTEN. HLPHA1 
ATTENUATION ALPHA 
RESIDUAL ATTEN. ALPHH2 
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